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Abstract

We investigate numerically the heat transfer and fluid flow characteristics inside a wavy walled enclosure. Second law of thermodynamics
is also applied to predict the nature of irreversibility in terms of entropy generation. Finite-volume method is used to discretize the governing
differential equations with non-staggered variable arrangement. SIP (strongly implicit procedure) solver solves the linear equation systems
with full multigrid (FMG) acceleration. Simulation was carried out for a range of wave ratio (defined by amplitude/average. wi@ti)-

0.4, aspect ratio (defined by height/average widtk} 1.0-2.0, Rayleigh numbéRa= 10°-10’ for a fluid having Prandtl number equal to

0.7. The angle of inclinatiord{ is varied from O to 360" with 15° interval. Streamlines and isothermal lines represent the corresponding
flow and thermal fields. Local and global Nusselt number distributions express the rate of heat transfer. Contour of Bejan number is plotted.
Volume averaged entropy generation rate is also presented.
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1. Introduction transfer with the surface waviness when compared with flat
wall cavity. For both (hot and cold) wavy walls, Mahmud
Geometrical complexity restricts wide-variety analyses et al. [2] recently presented the flow and heat transfer char-
of heat transfer and fluid flow problems inside wavy- acteristics inside a vertical wavy walled enclosure. They
walled enclosures. Literatures related to this topic are also reported the decrease of average heat transfer with the
not as rich as enclosures with flat walls. Whatever the increase of surface waviness. Hadjadj and Kyal [3] humer-
shape of the wall, flow and heat transfer problems inside ically investigated the effect of sinusoidal protuberances on
enclosures have numerous engineering applications likeheat transfer and fluid flow inside an annular space using
solar-collectors, double-wall insulation, electric machinery, a non-orthogonal coordinate transformation. They reported
cooling system of electronic devices, natural circulation in that both local and average heat transfer increase with the in-
the atmosphere, the molten core of the Earth, etc. Always crease of protuberances amplitude and Rayleigh number and
there is a possibility of complex interaction between finite decreasing Prandtl number. Kumar [4] presented the para-
fluid content inside the enclosure with the enclosure walls. metric results of flow and thermal field inside a vertical wavy
This complexity increases when the wall becomes wavy or enclosure with pours media. He concluded that the surface
with the change of orientation of the enclosure. Addition of temperature was very sensitive to the drifts in the surface
irreversibility analysis makes situation more complicated.  undulations, phase of the wavy surface and number of the
Adjlout et al. [1] reported natural convection in an in-  wave. Yao [5] presented the near wall characteristics of flow
clined cavity with hot wavy wall and cold flat wall. One of  and thermal field of a vertical wavy wall. Saidi et al. [6]
their interesting findings was the decrease of average heapresented numerical and experimental results of flow over
and heat transfer from a sinusoidal cavity. They reported
PN . that the total heat exchange between the wavy wall of the
Corresponding author. . . .
E-mail addressessmahmud@engmail.uwaterloo.ca (S. Mahmud), cavity and flowing fluid was reduced by the presence of vor-
sadrul@me.buet.ac.bd (A.K.M.S. Islam). tex. Vortex plays the role of a thermal screen, which creates
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Nomenclature

a amplitude ofthewave .................... m U dimensionless velocity componenrtu/ Vo

A aspect ratio= H/W v velocity component iry-direction .. .. msec!
Be Bejan number (see Eq. (11)) Vv dimensionless velocity componegrt,v/ Vo

Br Brinkman number=Ec x Pr w average width of the cavity ................ m
Cp specificheat ................... k1K1 X horizontal coordinate

Ec Eckert number= VZ/(C,AT) X dimensionless horizontal coordinate

FFI fluid friction irreversibility y vertical coordinate

HTI heat transfer irreversibility . Y dimensionless vertical coordinate

g gravityvector ...................... 8sec

H heightofthe cavity ....................... m Greek symbols

h heat transfer coefficient ......... 2Kt o thermal diffusivity . ................ fsect
k thermal conductivity ........ Lo WhTLKL B thermal expansion coefficient............ -k
Ns entropy generation numbes, Sge/ S, A difference between tow values

Nu Nusselt numbee=1 - W/k A surface wavinessz a/ W

Pr Prandtl numbers= v/« o density of the fluid .................. ky 3
p PreSSUME . . ittt e Pa , kinematic viscosity ................ sec!
P dimensionless pressure,p/(pV§) Q dimensionless temperature differeneeAT/ Ty
Ra Rayleigh number= Gr x Pr e dimensionless temperature

Sgen  entropy generationrate.......... 3Kt Subscri

S characteristic entropy transfer rate -/ 3.K ~1 ubscripts

T temperature . ...............oieeeii.... °C av average value

To reference temperature .. ................ °C L local value

u velocity component in-direction .. .. msec! w value at the wall

a large region of uniform temperature in the bottom of the ferent reasons behind entropy generation in applied thermal
cavity. Asako and Faghri [7] and Mahmud et al. [8] gave a engineering. The generation of entropy destroys the avail-
Finite-volume prediction of heat transfer and fluid flow char- able work of a system. Therefore, it makes good engineering
acteristics inside a wavy walled duct and tube respectively. sense to focus on the irreversibility of heat transfer and fluid
Lage and Bejan [9] documented heat transfer results near alow processes, and try to understand the function of the
periodically (timewise and spatial) stretching wall. Hossain entropy generation mechanism(s). For a comprehensive ref-
and Rees [10], Moulic and Yao [11] and Rees and Pop [12] erence, see Baytas [19], Bejan [20] and Mahmud and Fraser
presented similarity solutions for natural convection flow [21].
near wavy surface at different boundary conditions. Hamady  This paper presents characteristics of flow, heat transfer
etal. [13], Ozoe et al. [14], Elsherbiny [15], Sundstrom and and entropy generation inside an inclined enclosure bounded
Kimura [16] and Aydin [17] presented results of heat trans- by two isothermal wavy walls and two adiabatic straight
fer characteristics inside rectangular enclosure at differentwalls at different Rayleigh numbers and orientations for
aspect ratios and orientations without surface waviness. some selected values of surface waviness and aspect ratio.
The problems studied in the foregoing references are re-
stricted, in the thermodynamic point of view, to only the first
law (of thermodynamics) analysis. The contemporary trend
in the field of heat transfer and thermal design is the sec-
ond law (of thermodynamics) analysis and its design-related
concept of entropy generation and its minimization (Bejan  Considering two-dimensional laminar natural convection
[18]). This new trend is important and, at the same time, of an incompressible Newtonian fluid in a cavity with two
necessary, if the heat transfer community is to contribute to awavy walls and two flat walls. The corresponding height,
viable engineering solution to the energy problems. Entropy average width, and the amplitude of the wavy wall &fe
generation is associated with thermodynamic irreversibil- W, anda, respectively. Modeling the flow as ‘Boussinesq-
ity, which is present in all types of heat transfer processes. incompressible’ to take into account the coupling between
Different sources of irreversibility are responsible for heat the energy and momentum equations, we regard the density
transfer’s generation of entropy like heat transfer across fi- p as constant everywhere except in the buoyancy term of
nite temperature gradient, characteristics of convective heatmomentum equations (Egs. (2) and (3)). Correspondingly,
transfer, viscous effects, etc. Bejan [18] focused on the dif- the non-dimensional equations governing the conservation

2. Mathematical modeling
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Fig. 1. Schematic diagram of the problem under consideration.

of mass, momentum, and energy in the cavity of Fig. 1 are
as follows

U 9V
—t== 1)
ax | oy
3U+U3U+V8U
at X Y
B 8P+()sin9+ [Pr /32U 82U )
TAX Ra\9x2 = 3y2
v v v
— 4+ U—+V—
ot X Y
_ P cos 4 [Pr 22V 32V @)
Y Ra\ox2  ay2
a(~)+ a(~)+va(~)
at X Y
1 920 920
= (4)
PrRa\dX2 = 9Y2

Egs. (1)—(4) are put into their dimensionless forms by
scaling different lengths with average widih, velocity
components with reference velocityp, which is equal to
(gBATW)Y2, pressure withpVZ, time with W/ Vo. The
dimensionless temperature can be definedvas (T —
Tc)/AT where AT is equal to {{ — Tc). According to

Bejan [18], the entropy generation equation in dimensionless

SR
G G R

(5)
where entropy generation numb¥y is the ratio of entropy
generation rateSg., and characteristic entropy transfer
rate, S/, which is equal tokAT?2/(T¢W?). Br and 2

1005

2.1. Boundary and initial conditions

Fig. 1 shows the geometry under consideration in the
present investigation with different boundary conditions
and axis system. Two straight walls of the cavity are
kept adiabatic. The wavy walls are isothermal and kept
at different temperatures. The surface wave shape of the
wavy walls follows the equations given in Eqgs. (6¢) and
(6d). The hot and cold wall temperatures &g and Tc.
The gravity accelerationy is acted downwards. No slip
boundary condition is applied for velocity components at
both isothermal and adiabatic walls. Boundary conditions
can be summarized by the following equations:

1 1
T >0, Y =0, —<——A>§X§<——A>
2 2 (62)
0®
UZVZO, _— =
Y
1 1
>0, Y=A, —(——A)gxg(——)\)
2 2 (6b)
UZVZO, — =
Y
7 >0, 0<Y<A
1 T 4y
X=|==-2Ax AMl—-sin=(1+— 6¢c
(-3)w[-3(+%)] e
7 >0, 0<Y<A
1 T 4y
X=—(==A)=X|l1=sin=(1+— 6d
(3-3) -3 (%) o
As the initial condition, a motionless state and uniform
temperature are taken:
At =0, O<Y <A
and
1 A Al sinﬂ 1+4Y X
2 2 A~
1 1 4y
——A All—sinz|14+ — 7
<(3-3) #{r-an3(1+ 7)) ™
U=V=0=0

2.2. Solution methodology

To conduct a numerical analysis for the thermofluid
dynamics fields, we used the technique similar as Hortmann
et al. [22] based on the finite-volume method as described
in Ferziger and Peric [23]. The solution domain is first
subdivided into finite number of control volumes (CV).

are the Brinkman number and dimensionless temperatureBody fitted, non-orthogonal grids are oriented in such a

difference, respectively. The ratio 8 and 2 is generally
named as group parametgs.is a reference temperature and
for the present investigatioffp is put equal tdlc.

way that the number of CV is higher near the walls. All
variables are calculated at the center of each CV (non-
staggered scheme). SIMPLE algorithm is used.



1006 S. Mahmud, A.K.M.S. Islam / International Journal of Thermal Sciences 42 (2003) 1003-1012

First the momentum equations (Eq. (2) and Eq. (3)) are
discretized and linearized. Convective fluxes are approxi-
mated using UDS scheme with linear deferred correction
(Ferziger and Peric [23]) which is second order accurate. 0.5
CDS scheme approximated diffusive fluxes. Discretized mo-
mentum equations lead to an algebraic equation systems >
for velocity componenté&/ and V where pressure, temper-
ature, fluid properties are taken from the previous iteration
except the first iteration where initial conditions are ap- 0.5
plied. These linear equation systems are solved iteratively ‘
(inner iteration) to obtain an improved estimate of veloc- -1
ity. The improved velocity field is then used to estimate new
mass fluxes, which satisfy the continuity equation. Pressure-
correction equation is then solved using the same linear
equation solver and to the same tolerance. Energy equation
is then solved in the same manner to obtain better estimate 10
of new solution. This completes one outer iteration and is 8
repeated until residual level is less than or equal t6°10

y:
¥ —e—— Grid: 64x128
—a8—— Grid: 32x64
—+—— Grid: 16x32

| NN EEEEE SN FEE A

-0.1 0 0.1 02 03
X

L= —J

at a particular time step. Then the above procedure is re- 6 -
peated for a new time step. For time marching, we selected C
‘Three Time Level Methodhich is a fully implicit scheme A
of second order accurate. For details of this method, see Eﬁ B

Ferziger and Peric [23]. In this study the SIP-solver based
on lower-upper decomposition (ILU) is used to solve the lin-

ear equation systems. To avoid divergence, underrelaxation
parameter 0.7 is used for velocity, 0.2 for pressure and 0.9

Hamady et.al. [13]
Hortmann et.al [22]
Markatos et.al [24]

for temperature. Once steady-state converged solution is at- f Present prediction
tained, entropy generation nhumber is calculated using the — """'4 - """'5 E—
converged value aof/, vV, ® from Eq. (5). 10 100 Gp 10 10
(b)
2.3. Accuracy assessment Fig. 2. (a) Velocity profiles atv = 0.5 for three different grid sizes.

(b) Comparison of present prediction with benchmark solutions and
experimental results.
Accuracy of the numerical method is tested with three

combinations (16< 32, 32x 64, and 64x 128) of grid-
size. Profiles forV-velocity are plotted at the mid-height
(Y = A/2) of the cavity (Fig. 2(a)) foRa= 10% X =
0.25,0 = 0° and A = 2.0. Velocity profile for coarse grid

é146 x 3;2]2 Sh%VXS slozme d%wa;c}oq W.'th rtr)ledmm C?}atge >f<,| The patterns of the flow and thermal fields are presented
) and fine(64 x 128) grids. Variation between the profiles in Fig. 3(a)—(h) in terms of streamlines and isothermal lines

of medium coarse and fine grids is very small. Maximum for a constant Rayleigh numbeR&= 10°) keeping wall
percentage deviation of the magnitude of velocity between , o .1 acq { = 0.25) and aspect ratioA(= 2.0) constant.
coarseg(16 x 32) and fine grid(64 x 128) solution is 4% and For a particular angle of orientatior & 0°), effect of

3. Resultsand discussions

3.1. Flow and thermal field

medium-coars€32 x 64) and fine-grid(64 x 128 is 1.5%,  Rayleigh number on the flow and thermal fields are avail-
respectively. Throughout this study the results are presented,pje in Mahmud et al. [2]. Eight different angular positions
for 64 x 128 CVs'. (0) are selected (see Fig. 3(a)—(h)). For the convenience of

Predicted results of average Nusselt number for a squarepresentation, magnitudes of the streamfunction are made
cavity (A =1, » =0, 6 = 0°) with the same boundary  dimensionless by dividing individual values with the max-
conditions are compared with the benchmark solution of imum value of the streamfunction/fay for each case.
Hortmann et al. [22] and with the experimental data of Values of the streamfunction then range between 0 to 1.
Hamady et al. [13] and Markatos and Pericleous [24]. Maximum value of the streamfunction for each angular ori-
Fig. 2(b) shows this comparison. Predicted results show aentation is given in Fig. 3(a)—(h). Fig. 3(a) shows the flow
very good agreement with the reference benchmark solutionand thermal field fop = 0°. Hot fluid moves up along the
and experimental works. hot wall, turns to the left near the top adiabatic wall and then
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() (h)

Fig. 3. Flow and thermal fields at different angles of inclination:&(&) 0°, ¥ymax = 0.01221; (b)0 = 45°, Yymax= 0.00631; ()0 = 90°, ¥max = 0.000468;
(d) 6 = 135°, ¥max = 0.00631; ()0 = 180°, y¥max = 0.01221; (f) 0 = 225°, ymax = 0.016291; (g)0 = 27C°, ¥max = 0.008193; (h)o = 315°,
Ymax= 0.016281.

mixes with the fluid that moves downwards along the cold batic walls and directed towards the opposite wall due to the
wall. This makes the circulation inside the cavity. Convec- high convection current. The second factor is the curvature
tion current is sufficiently strong &a= 10°, which causes  of the wall. Concentration of isotherms causes high temper-
the convective distortion of isotherms. The lower portion of ature gradient. Heat transfer rate is essentially high at these
the hot wall and the upper portion of cold the wall are iden- two spots. AB = 45° (Fig. 3(b)), the core of the streamlines
tified as the strong concentrators of isotherms. Two factorsis elongated at the horizontal direction. Two comparatively
are simultaneously responsible for the high concentration of weaker spots of high temperature gradient are observed at
the isotherms at the above-mentioned position. The first fac-the lower part of the hot wall and upper part of the cold wall.
tor is the fluid-jet (right to left near top adiabatic wall and Fluid is almost motionless & = 90° showing no swirls in

left to right near bottom adiabatic wall) turned by the adia- the isotherms. Isotherms nearly follow the geometry of the
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wavy walls. Fluid is very much stable at this angular position 6 - A=2.0. 1=0.25. Ra=10°

of the cavity ¢/max= 0.000468). It should be noted that the ’ ’

strength of the flow, a# = 90°, is approximately 34 times 3

weaker than the flow & = 225° and 313. Motion of the W

fluid is reversed ai = 135’ as indicated by the negative val- o\

ues of streamfunction. Core of the streamlines is elongated o W oo

horizontally similar tod = 45° but opposite in shape. Flow 2 3 W e

and thermal field a# = 180 is similar (but opposite in di-

rection) to6 = 0°. Two counter rotating cells are observed 2

atf = 270°. Fluid is at the most unstable condition at this

angular position. Isothermal lines show swirling pattern but 1E

symmetrical about the mid-plan of the cavity. Flow and ther- - | | | |

1 — 1 imi e i i i T T I A A

;nil ggg.at@ = 315 is similar (but opposite in direction) to 00 02 04 y 06 03 1

3.2. Local heat transfer Fig. 4. Variation of local Nusselt number withat Ra= 103,
. . 14 -

Heat transfer rate is presented in terms of local and _ A=0.5. =0.125. Ra=10°
average Nusselt number. Local Nusselt numbéu.( is 12 ’ ’ /
calculated from the following equation o N

10 N

et E(5) |-(%), e

k kK AT \dn /, dn /,, - 8 -
In the above equation,, is the local convective heat transfer Z E
coefficient. The term(d7/dn),,’ represents the temperature 6
gradient normal to the wall whereis the normal distance 4 =
andn is the dimensionless normal distance. Distribution of -
local Nusselt number along the hot wall is presented in Fig. 4 = 45°
and Fig. 5 for two different Rayleigh numbeRa= 10° = o0°
and 16, for a constant surface waviness £ 0.25) and 00_' = 6'2' = '0'4' = '0'6' = '0'8' -
aspect ratio 4 = 2.0). At Ra= 10°, convection is less ' Ty '
dominant, isotherms follow mainly the surface geometry
showing minimum temperature gradient at the middle of Fig. 5. Variation of local Nusselt number withat Ra= 10°.

the cavity where cross-sectional area is maximum. Whatever

the orientation ) of the cavity, local Nusselt number inside the cavity. At this angular position, local Nusselt
distribution shows a wavy patterns as shown in Fig. 4; number distribution aRa= 10° shows similar pattern as
minimum heat transfer occurs at the middle of the cavity Ra= 10%. At 6 = 270, bicellular flow appears and local
due to the maximum cross-sectional area and maximum atNusselt number shows periodic distribution along the hot
the ends. Heat transfer rate is almost same in magnitudewall.

at the middle of the cavity for all values &. ForY <

0.5, heat transfer rate is slightly lower in magnitude for 3.3. Average heat transfer

higher value of¢ and this scenario is reversed far >

0.5. Convection dominates and boundary layer appears at Average Nusselt number is calculated by integrating local
Ra= 10°. Local Nusselt number falls gradually along the Nusselt number distribution using the following equation

wall at 9 = 0° (see Fig. 5). For a range®< Y < 0.75, S

i 1
Nu§§elt number QOes not vary with. Isotherms starts Uay = —/NuL ds )
swirling due to high convective current at this Rayleigh

number ford = 0°. Isothermal line close to the hot wall 0

maintains a constant distance for this ra@é < Y < 0.75) wheres is the distance along the wavy wall afids the total
showing constant temperature gradient as well as Nusseltiength of the wavy wall which can be calculated using the
number. Similar pattern is observedét= 180°. For 6 = following expression

45°, Nusselt number falls gradually up 6 = 0.5. After A

Y = 0.5, variation of Nusselt number is almost independent g— / 14 (d_x) a4y — A% 4+ 2)27? 10)

of Y up to the other end of the cavity. Same nature is dy A

observed in the Nusselt number distribution foe= 135°. 0

At the cavity orientatio® = 90°, fluid is almost motionless  Fig. 6 shows the distribution of average Nusselt number as
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Fig. 6. Variation of average Nusselt number with angle of inclination.

a function of angle of inclinatiori9) at different Rayleigh
numbers foriA = 0.166 and A = 2.0. For a particular
angular positior9, average Nusselt number increases with
the increase of Rayleigh number excépt 90°. For Ra>

10%, average Nusselt number gradually decreases with the

increase of6 up to & = 90° where Nugy = 1.0 for all
values of Rayleigh numbers. Further increasé @icrease

the average Nusselt number and shows a maximum at

0 ~ 200°. Additional increase of decreases the average
Nusselt number up té = 270°. After § = 270°, average
Nusselt number again increases witand shows the second
maximum a® ~ 335 and again decreases.

3.4. Effect of surface waviness

Fig. 7 shows the distribution of average Nusselt number

as a function of surface wavinegs) for A = 2.0 and
Ra= 10° for some selected values®f Three distinct zones

1009

- ——..

2.5

0.1 0.2 0.3 0.4
A

s
CSETTTTT

Fig. 7. Variation of average Nusselt number with surface waviness.

16
_ 105 o—°
14*\ A=2.0, Gr=10", 6=0
123— 1=0.4
- ———— - 2=0.32
10
= oF
z 3F
6F
4F
2F
0:||||I||||I||||I||||I||||
0 0.2 0.4 0.6 0.8 1
Y

Fig. 8. Local Nusselt number variation withat differenta.

(0.9< Y £ 1.0). So, when integrated, distribution i, at

are identified depending on the pattern of average Nusseltr = 0.4 gives higheNua than = 0.32 and 0.25. This type

number variation withi. Very lower values of surface
waviness % < 0.05) does not play any effective role on

of behavior is restricted to higher valuesjof

average heat transfer. Heat transfer is invariant with surface3.5. Effect of aspect ratio

waviness belows ~ 0.05. In the middle range of surface
waviness(0.05 < A < 0.325), heat transfer gradually falls

Fig. 9 shows the variation of average Nusselt number

with the increase of surface waviness approximately up to as a function of Rayleigh number for three different aspect

A ~ 0.35. Further increase of increases average Nusselt
number. At high waviness (i.e.,> 0.35), interwall spacing

ratio A = 1.0, 1.5, 2.0 at a constant surface wavinegss=(
0.25) and angular positior# (= 0°). Based on the Rayleigh

closer to the top end becomes small causing no convectivenumber two distinct zones can be identified from the figure.
distortion of isotherms. Isotherms remain concentrated at theFor Ra< 10°, average Nusselt number is constaast1(0)

wall and heat transfer is entirely dominated by conduction
showing high rate of heat transfer at this portion. Fig. 8
will give a clear idea about the surprising rise of average
Nusselt number at higher. For a particular positiod =

0°, local Nusselt number is plotted as a functionofin
Fig. 8 for three different but comparatively higher values
of A (=0.25, 0.32, 0.4). For & Y < 0.9, magnitude of

and independent of Rayleigh number whatever the value
of aspect ratio. This is actually the conduction regime.
For Ra> 10°, Nusselt number increases with Rayleigh

number. For a particular Rayleigh number, lower aspect
ratio shows the higher heat transfer rate. Comparatively
smaller Interwall spacing for lower aspect ratio set the
isotherms more close to the wall, which causes a high

Nug, is more or less same. A drastic rise of Nusselt number temperature gradient. When integrated for calculating total

occurs aftery ~ 0.9 for » = 0.4. The magnitude oNu;, is
comparatively higher thah = 0.25 and 0.32 for this range

heat transfer, cavity with lower aspect ratio shows higher
Nugy distribution.
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4. Entropy generation particular problem, is an internal competition between HTI
and FFI. Usually, free convection problems, at low and mod-
The dimensionless form of entropy generation ratg)( erate Rayleigh numbers, are dominated by the heat transfer

given in Eq. (5), consists of two parts. The first part (first irreversibility (discussed later in details). Entropy generation
square bracketed term at the right-hand side of Eq. (5)) is thenumber (Vs) is good for generating entropy generation pro-
irreversibility due to finite temperature gradient and gener- files or maps but fails to give any idea whether fluid friction
ally termed as heat transfer irreversibility (HT1). The second Or heat transfer dominates. Bejan [20] proposed irreversibil-
part is the contribution of fluid friction irreversibility (FFl) to ity distribution ratio @), which is the ratio between FFI and
entropy generation, which can be calculated from the secondHTI. As an alternative irreversibility distribution parameter,

square bracketed term. The overall entropy generation, for aPaoletti et al. [25] defined Bejan numbé¢g] which is the
ratio of HTI to the total entropy generation. Mathematically

Bejan number becomes
1=0.25, =0’ i HTI 1
/ Be= =

HTI+FFl 14+
Bejan number ranges from 0 to 1. AccordingBe=1 is
the limit at which the heat transfer irreversibility dominates,
Be= 0 is the opposite limit at which the irreversibility is
dominated by fluid friction effects, anBe = 1/2 is the
case in which the heat transfer and fluid friction entropy
generation rates are equal.

For a constant aspect ratie- .0) and surface waviness
(= 0.125), Fig. 10 shows the contours of Bejan number for
Ra= 10-1¢ and 6 = 0°. For each case, maximum and
ol Lo v o Lo Ll minimum values of Bejan numbeBénax and Benin) are
10° 100 10 ]1{)3 100 107 10 indicated at the figure titles. Difference between the magni-

tudes of two consecutive Bejan contours is equaB@yax—
Fig. 9. Variation of average Nusselt number with aspect ratio. Bemin)/10. At low Rayleigh numbers, fluid is almost mo-

(11)

2 N e

D W B~ W

Fig. 10. Contours of Bejan number at different Rayleigh numbeaad®: (a) Ra= 10!, Bamax=1, Bemin = 0.99; (b)Ra= 102, Bamax =1, Bemin = 0.98;
(c) Ra= 10%, Bemax = 1, Bemin = 0.89; (d) Ra= 10%, Bemax = 1, Bamin = 0.61; (e) Ra= 10°, Bamax = 1, Bamin = 0.51; (f) Ra= 10°, Banax= 1,
Beyin =0.16.
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Fig. 11. Contours of Bejan number at different angles of inclination Rae= 10°. (a) 6 = 45°, Bemax = 1, Bemin = 0.82; (b) 6 = 90°, Bemax = 1,
Bemin = 0.97; (c) 6 = 135°, Bamax =1, Bayin = 0.82; (d) 0 = 255°, Bémax = 1, Bénin = 0.19; (e)6 = 27C°, Bemax = 1, Benin = 0.21; (f) 6 = 315°,
Bemax= 1, Benin = 0.19.
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Fig. 12. Variation of average entropy generation number with angle of Fig. 13. Variation of Bejan nhumber with angle of inclination.

inclination.

tionless in the cavity. Irreversibility is entirely dominated by

heat transfer. Bejan contour shows symmetric distribution region of irreversibility is elongated along the wavy walls
atRa= 10, 1¢ and 16. Near wall concentration of Bejan ~compared to its vertical position (Fig. 10(d)). At= 90°,
contours indicates the region of high irreversibility. Convec- Small regions of wavy walls are identified as concentrator of
tion current becomes stronger at higher Rayleigh numbersirreversibility. It should be noted that the fluid is almost mo-
resulting distortion of isotherms. Near the core region of tionless at this position of the cavity. At= 225 and 315,

the cavity, nonzer@®/3Y starts dominating. With the in-  due to the convective distortion of isotherms, heat transfer
crease of Rayleigh number, zone of irreversibility at the core irreversibility occurs near wavy walls as well as the core re-
region becomes narrow. F&a= 10°, Bejan contours are  gion of the cavity. Due to the appearance of bicellular flow
presented in Fig. 11 for six different orientations and con- and swirling nature of isotherms ét= 270°, a complicated
stant aspect ratio and waviness. At 45° and 135, the Bejan contour distribution is observed.
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A volume averaged entropy generation ralés ) is
calculated using the following equation

1
NS,aV:V/NSdV (12)
\

whereV is the volume of the cavity. Fig. 12 shows the
variation of Nsay with 6 at Ra= 10%, 10° and 16
keeping surface waviness=(0.125), aspect ratio=f 2.0)
and group parameter1.0) constant. Distribution pattern
of Ns ay With 6 is very much similar tdNuay—6 distribution

as shown in Fig. 6. For each Rayleigh number, rate of
average entropy generation falls with increasinghowing

its minimum value at? = 90°. At this angular position,
entropy generation is same in magnitude of all Rayleigh
numbersNug ay—6 distribution is symmetric about forrG<

0 < 18C°. The second symmetrical distribution dlus ay
with 6 is observed for 180< 6 < 36(°. Based on the
average values of FFI and HTI, Bejan number is calculated
and plotted in Fig. 13 for the same flow and geometric
parameters as shown in Fig. 12.

5. Conclusions

Heat transfer characteristics with flow structure are stud-
ied numerically in this paper for a cavity with differentially
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