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Abstract

We investigate numerically the heat transfer and fluid flow characteristics inside a wavy walled enclosure. Second law of thermo
is also applied to predict the nature of irreversibility in terms of entropy generation. Finite-volume method is used to discretize the g
differential equations with non-staggered variable arrangement. SIP (strongly implicit procedure) solver solves the linear equatio
with full multigrid (FMG) acceleration. Simulation was carried out for a range of wave ratio (defined by amplitude/average width)λ= 0.0–
0.4, aspect ratio (defined by height/average width)A= 1.0–2.0, Rayleigh numberRa= 100–107 for a fluid having Prandtl number equal
0.7. The angle of inclination (θ) is varied from 0◦ to 360◦ with 15◦ interval. Streamlines and isothermal lines represent the correspo
flow and thermal fields. Local and global Nusselt number distributions express the rate of heat transfer. Contour of Bejan number
Volume averaged entropy generation rate is also presented.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Geometrical complexity restricts wide-variety analys
of heat transfer and fluid flow problems inside wav
walled enclosures. Literatures related to this topic
not as rich as enclosures with flat walls. Whatever
shape of the wall, flow and heat transfer problems ins
enclosures have numerous engineering applications
solar-collectors, double-wall insulation, electric machine
cooling system of electronic devices, natural circulation
the atmosphere, the molten core of the Earth, etc. Alw
there is a possibility of complex interaction between fin
fluid content inside the enclosure with the enclosure wa
This complexity increases when the wall becomes wav
with the change of orientation of the enclosure. Addition
irreversibility analysis makes situation more complicated

Adjlout et al. [1] reported natural convection in an i
clined cavity with hot wavy wall and cold flat wall. One o
their interesting findings was the decrease of average
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transfer with the surface waviness when compared with
wall cavity. For both (hot and cold) wavy walls, Mahmu
et al. [2] recently presented the flow and heat transfer c
acteristics inside a vertical wavy walled enclosure. T
also reported the decrease of average heat transfer wit
increase of surface waviness. Hadjadj and Kyal [3] num
ically investigated the effect of sinusoidal protuberances
heat transfer and fluid flow inside an annular space u
a non-orthogonal coordinate transformation. They repo
that both local and average heat transfer increase with th
crease of protuberances amplitude and Rayleigh numbe
decreasing Prandtl number. Kumar [4] presented the p
metric results of flow and thermal field inside a vertical wa
enclosure with pours media. He concluded that the sur
temperature was very sensitive to the drifts in the surf
undulations, phase of the wavy surface and number of
wave. Yao [5] presented the near wall characteristics of fl
and thermal field of a vertical wavy wall. Saidi et al. [
presented numerical and experimental results of flow o
and heat transfer from a sinusoidal cavity. They repo
that the total heat exchange between the wavy wall of
cavity and flowing fluid was reduced by the presence of v
tex. Vortex plays the role of a thermal screen, which cre
sevier SAS. All rights reserved.
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Nomenclature

a amplitude of the wave . . . . . . . . . . . . . . . . . . . . m
A aspect ratio,=H/W

Be Bejan number (see Eq. (11))
Br Brinkman number,= Ec× Pr
CP specific heat . . . . . . . . . . . . . . . . . . . kJ·kg−1·K−1

Ec Eckert number,= V 2
0 /(Cp�T )

FFI fluid friction irreversibility
HTI heat transfer irreversibility
g gravity vector . . . . . . . . . . . . . . . . . . . . . . m·sec−1

H height of the cavity . . . . . . . . . . . . . . . . . . . . . . . m
h heat transfer coefficient . . . . . . . . . W·m−2·K−1

k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

NS entropy generation number,= Ṡ′′′
gen/Ṡ

′′′
c

Nu Nusselt number,= h ·W/k

Pr Prandtl number,= ν/α

p pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P dimensionless pressure,= p/(ρV 2

0 )

Ra Rayleigh number,= Gr × Pr
Ṡ′′′

gen entropy generation rate . . . . . . . . . . W·m−3·K−1

Ṡ′′′
c characteristic entropy transfer rate W·m−3·K−1

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦C
T0 reference temperature . . . . . . . . . . . . . . . . . . . .◦C
u velocity component inx-direction . . . . m·sec−1

U dimensionless velocity component,= u/V0

v velocity component iny-direction . . . . m·sec−1

V dimensionless velocity component,= v/V0

W average width of the cavity . . . . . . . . . . . . . . . . m
x horizontal coordinate
X dimensionless horizontal coordinate
y vertical coordinate
Y dimensionless vertical coordinate

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . m2·sec−1

β thermal expansion coefficient . . . . . . . . . . . . K−1

� difference between tow values
λ surface waviness,= a/W

ρ density of the fluid . . . . . . . . . . . . . . . . . . kg·m−3

ν kinematic viscosity . . . . . . . . . . . . . . . . m2·sec−1

Ω dimensionless temperature difference,=�T/T0

Θ dimensionless temperature

Subscripts

av average value
L local value
w value at the wall
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a large region of uniform temperature in the bottom of
cavity. Asako and Faghri [7] and Mahmud et al. [8] gav
Finite-volume prediction of heat transfer and fluid flow ch
acteristics inside a wavy walled duct and tube respectiv
Lage and Bejan [9] documented heat transfer results ne
periodically (timewise and spatial) stretching wall. Hoss
and Rees [10], Moulic and Yao [11] and Rees and Pop
presented similarity solutions for natural convection fl
near wavy surface at different boundary conditions. Ham
et al. [13], Ozoe et al. [14], Elsherbiny [15], Sundstrom a
Kimura [16] and Aydin [17] presented results of heat tra
fer characteristics inside rectangular enclosure at diffe
aspect ratios and orientations without surface waviness.

The problems studied in the foregoing references are
stricted, in the thermodynamic point of view, to only the fi
law (of thermodynamics) analysis. The contemporary tr
in the field of heat transfer and thermal design is the s
ond law (of thermodynamics) analysis and its design-rela
concept of entropy generation and its minimization (Be
[18]). This new trend is important and, at the same tim
necessary, if the heat transfer community is to contribute
viable engineering solution to the energy problems. Entr
generation is associated with thermodynamic irrevers
ity, which is present in all types of heat transfer proces
Different sources of irreversibility are responsible for h
transfer’s generation of entropy like heat transfer acros
nite temperature gradient, characteristics of convective
transfer, viscous effects, etc. Bejan [18] focused on the
t

ferent reasons behind entropy generation in applied the
engineering. The generation of entropy destroys the a
able work of a system. Therefore, it makes good enginee
sense to focus on the irreversibility of heat transfer and fl
flow processes, and try to understand the function of
entropy generation mechanism(s). For a comprehensive
erence, see Baytas [19], Bejan [20] and Mahmud and Fr
[21].

This paper presents characteristics of flow, heat tran
and entropy generation inside an inclined enclosure boun
by two isothermal wavy walls and two adiabatic straig
walls at different Rayleigh numbers and orientations
some selected values of surface waviness and aspect ra

2. Mathematical modeling

Considering two-dimensional laminar natural convect
of an incompressible Newtonian fluid in a cavity with tw
wavy walls and two flat walls. The corresponding heig
average width, and the amplitude of the wavy wall areH ,
W , anda, respectively. Modeling the flow as ‘Boussines
incompressible’ to take into account the coupling betw
the energy and momentum equations, we regard the de
ρ as constant everywhere except in the buoyancy term
momentum equations (Eqs. (2) and (3)). Correspondin
the non-dimensional equations governing the conserva
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Fig. 1. Schematic diagram of the problem under consideration.

of mass, momentum, and energy in the cavity of Fig. 1
as follows

∂U

∂X
+ ∂V

∂Y
= 0 (1)

∂U

∂τ
+U

∂U

∂X
+ V

∂U

∂Y

= −∂P

∂X
+Θ sinθ +

√
Pr

Ra

(
∂2U

∂X2 + ∂2U

∂Y 2

)
(2)

∂V

∂τ
+U

∂V

∂X
+ V

∂V

∂Y

= −∂P

∂Y
+Θ cosθ +

√
Pr

Ra

(
∂2V

∂X2
+ ∂2V

∂Y 2

)
(3)

∂Θ

∂τ
+U

∂Θ

∂X
+ V

∂Θ

∂Y

= 1√
Pr Ra

(
∂2Θ

∂X2
+ ∂2Θ

∂Y 2

)
(4)

Eqs. (1)–(4) are put into their dimensionless forms
scaling different lengths with average widthW , velocity
components with reference velocity,V0, which is equal to
(gβ�TW)1/2, pressure withρV 2

0 , time with W/V0. The
dimensionless temperature can be defined asΘ = (T −
TC)/�T where�T is equal to (TH − TC). According to
Bejan [18], the entropy generation equation in dimension
form

NS =
[(

∂Θ

∂X

)2

+
(
∂Θ

∂Y

)2]

+ Br

Ω

[
2

{(
∂U

∂X

)2

+
(
∂V

∂Y

)2}
+

(
∂U

∂Y
+ ∂V

∂Y

)2]
(5)

where entropy generation numberNS is the ratio of entropy
generation rateṠ′′′

gen and characteristic entropy transf

rate, Ṡ′′′
c , which is equal tok�T 2/(T 2

0W
2). Br and Ω

are the Brinkman number and dimensionless tempera
difference, respectively. The ratio ofBr andΩ is generally
named as group parameter.T0 is a reference temperature a
for the present investigation,T0 is put equal toTC.
2.1. Boundary and initial conditions

Fig. 1 shows the geometry under consideration in
present investigation with different boundary conditio
and axis system. Two straight walls of the cavity a
kept adiabatic. The wavy walls are isothermal and k
at different temperatures. The surface wave shape of
wavy walls follows the equations given in Eqs. (6c) a
(6d). The hot and cold wall temperatures areTH and TC.
The gravity accelerationg is acted downwards. No sli
boundary condition is applied for velocity components
both isothermal and adiabatic walls. Boundary conditi
can be summarized by the following equations:

τ � 0, Y = 0, −
(

1

2
− λ

)
�X �

(
1

2
− λ

)
U = V = 0,

∂Θ

∂Y
= 0

(6a)

τ � 0, Y =A, −
(

1

2
− λ

)
�X �

(
1

2
− λ

)

U = V = 0,
∂Θ

∂Y
= 0

(6b)

τ � 0, 0 � Y �A

X =
(

1

2
− λ

)
+ λ

[
1− sin

π

2

(
1+ 4Y

A

)]
U = V = 0, Θ = 1

(6c)

τ � 0, 0 � Y �A

X = −
(

1

2
− λ

)
− λ

[
1− sin

π

2

(
1+ 4Y

A

)]
U = V = 0, Θ = 0

(6d)

As the initial condition, a motionless state and unifo
temperature are taken:

At τ = 0, 0< Y <A

and

−
(

1

2
− λ

)
− λ

[
1− sin

π

2

(
1+ 4Y

A

)]
<X

<

(
1

2
− λ

)
+ λ

[
1− sin

π

2

(
1+ 4Y

A

)]
(7)

U = V =Θ = 0

2.2. Solution methodology

To conduct a numerical analysis for the thermofl
dynamics fields, we used the technique similar as Hortm
et al. [22] based on the finite-volume method as descr
in Ferziger and Peric [23]. The solution domain is fi
subdivided into finite number of control volumes (CV
Body fitted, non-orthogonal grids are oriented in suc
way that the number of CV is higher near the walls.
variables are calculated at the center of each CV (n
staggered scheme). SIMPLE algorithm is used.
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First the momentum equations (Eq. (2) and Eq. (3))
discretized and linearized. Convective fluxes are appr
mated using UDS scheme with linear deferred correc
(Ferziger and Peric [23]) which is second order accur
CDS scheme approximated diffusive fluxes. Discretized
mentum equations lead to an algebraic equation sys
for velocity componentsU andV where pressure, tempe
ature, fluid properties are taken from the previous itera
except the first iteration where initial conditions are a
plied. These linear equation systems are solved iterati
(inner iteration) to obtain an improved estimate of vel
ity. The improved velocity field is then used to estimate n
mass fluxes, which satisfy the continuity equation. Press
correction equation is then solved using the same lin
equation solver and to the same tolerance. Energy equ
is then solved in the same manner to obtain better estim
of new solution. This completes one outer iteration an
repeated until residual level is less than or equal to 1−5

at a particular time step. Then the above procedure is
peated for a new time step. For time marching, we sele
‘Three Time Level Method’ which is a fully implicit scheme
of second order accurate. For details of this method,
Ferziger and Peric [23]. In this study the SIP-solver ba
on lower-upper decomposition (ILU) is used to solve the
ear equation systems. To avoid divergence, underrelax
parameter 0.7 is used for velocity, 0.2 for pressure and
for temperature. Once steady-state converged solution
tained, entropy generation number is calculated using
converged value ofU , V , Θ from Eq. (5).

2.3. Accuracy assessment

Accuracy of the numerical method is tested with th
combinations (16× 32, 32× 64, and 64× 128) of grid-
size. Profiles forV -velocity are plotted at the mid-heigh
(Y = A/2) of the cavity (Fig. 2(a)) forRa = 104, λ =
0.25, θ = 00, andA = 2.0. Velocity profile for coarse grid
(16× 32) shows some deviation with medium coarse(32×
64) and fine(64× 128) grids. Variation between the profile
of medium coarse and fine grids is very small. Maxim
percentage deviation of the magnitude of velocity betw
coarse(16×32) and fine grid(64×128) solution is 4% and
medium-coarse(32× 64) and fine-grid(64× 128) is 1.5%,
respectively. Throughout this study the results are prese
for 64× 128 CVs’.

Predicted results of average Nusselt number for a sq
cavity (A = 1, λ = 0, θ = 00) with the same boundar
conditions are compared with the benchmark solution
Hortmann et al. [22] and with the experimental data
Hamady et al. [13] and Markatos and Pericleous [2
Fig. 2(b) shows this comparison. Predicted results sho
very good agreement with the reference benchmark solu
and experimental works.
-

(a)

(b)

Fig. 2. (a) Velocity profiles atY = 0.5 for three different grid sizes
(b) Comparison of present prediction with benchmark solutions
experimental results.

3. Results and discussions

3.1. Flow and thermal field

The patterns of the flow and thermal fields are prese
in Fig. 3(a)–(h) in terms of streamlines and isothermal li
for a constant Rayleigh number (Ra= 105) keeping wall
waviness (λ = 0.25) and aspect ratio (A = 2.0) constant.
For a particular angle of orientation (θ = 0◦), effect of
Rayleigh number on the flow and thermal fields are av
able in Mahmud et al. [2]. Eight different angular positio
(θ ) are selected (see Fig. 3(a)–(h)). For the convenienc
presentation, magnitudes of the streamfunction are m
dimensionless by dividing individual values with the ma
imum value of the streamfunction (ψmax) for each case
Values of the streamfunction then range between 0 t
Maximum value of the streamfunction for each angular
entation is given in Fig. 3(a)–(h). Fig. 3(a) shows the fl
and thermal field forθ = 0◦. Hot fluid moves up along th
hot wall, turns to the left near the top adiabatic wall and th
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Flow and thermal fields at different angles of inclination: (a)θ = 0◦, ψmax= 0.01221; (b)θ = 45◦, ψmax= 0.00631; (c)θ = 90◦, ψmax= 0.000468;
(d) θ = 135◦, ψmax = 0.00631; (e)θ = 180◦ , ψmax = 0.01221; (f) θ = 225◦, ψmax = 0.016291; (g)θ = 270◦, ψmax = 0.008193; (h)θ = 315◦ ,
ψmax= 0.016281.
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mixes with the fluid that moves downwards along the c
wall. This makes the circulation inside the cavity. Conv
tion current is sufficiently strong atRa= 105, which causes
the convective distortion of isotherms. The lower portion
the hot wall and the upper portion of cold the wall are id
tified as the strong concentrators of isotherms. Two fac
are simultaneously responsible for the high concentratio
the isotherms at the above-mentioned position. The first
tor is the fluid-jet (right to left near top adiabatic wall a
left to right near bottom adiabatic wall) turned by the ad
batic walls and directed towards the opposite wall due to
high convection current. The second factor is the curva
of the wall. Concentration of isotherms causes high tem
ature gradient. Heat transfer rate is essentially high at t
two spots. Atθ = 45◦ (Fig. 3(b)), the core of the streamline
is elongated at the horizontal direction. Two comparativ
weaker spots of high temperature gradient are observe
the lower part of the hot wall and upper part of the cold w
Fluid is almost motionless atθ = 90◦ showing no swirls in
the isotherms. Isotherms nearly follow the geometry of
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wavy walls. Fluid is very much stable at this angular posit
of the cavity (ψmax= 0.000468). It should be noted that th
strength of the flow, atθ = 90◦, is approximately 34 time
weaker than the flow atθ = 225◦ and 315◦. Motion of the
fluid is reversed atθ = 135◦ as indicated by the negative va
ues of streamfunction. Core of the streamlines is elong
horizontally similar toθ = 45◦ but opposite in shape. Flow
and thermal field atθ = 180◦ is similar (but opposite in di
rection) toθ = 0◦. Two counter rotating cells are observ
at θ = 270◦. Fluid is at the most unstable condition at th
angular position. Isothermal lines show swirling pattern
symmetrical about the mid-plan of the cavity. Flow and th
mal field atθ = 315◦ is similar (but opposite in direction) t
θ = 225◦.

3.2. Local heat transfer

Heat transfer rate is presented in terms of local
average Nusselt number. Local Nusselt number (NuL) is
calculated from the following equation

NuL = W

k
hL = W

k

{
k

�T

(
dT

dn

)
w

}
=

(
dΘ

dn̂

)
w

(8)

In the above equation,hL is the local convective heat transf
coefficient. The term ‘(∂T /∂n)w ’ represents the temperatu
gradient normal to the wall wheren is the normal distanc
and n̂ is the dimensionless normal distance. Distribution
local Nusselt number along the hot wall is presented in Fi
and Fig. 5 for two different Rayleigh numbers,Ra= 103

and 105, for a constant surface waviness (λ = 0.25) and
aspect ratio (A = 2.0). At Ra = 103, convection is less
dominant, isotherms follow mainly the surface geome
showing minimum temperature gradient at the middle
the cavity where cross-sectional area is maximum. What
the orientation (θ ) of the cavity, local Nusselt numbe
distribution shows a wavy patterns as shown in Fig.
minimum heat transfer occurs at the middle of the ca
due to the maximum cross-sectional area and maximu
the ends. Heat transfer rate is almost same in magn
at the middle of the cavity for all values ofθ . For Y <

0.5, heat transfer rate is slightly lower in magnitude
higher value ofθ and this scenario is reversed forY >

0.5. Convection dominates and boundary layer appea
Ra= 105. Local Nusselt number falls gradually along t
wall at θ = 0◦ (see Fig. 5). For a range 0.5 � Y � 0.75,
Nusselt number does not vary withY . Isotherms starts
swirling due to high convective current at this Raylei
number forθ = 0◦. Isothermal line close to the hot wa
maintains a constant distance for this range(0.5� Y � 0.75)
showing constant temperature gradient as well as Nu
number. Similar pattern is observed atθ = 180◦. For θ =
45◦, Nusselt number falls gradually up toY = 0.5. After
Y = 0.5, variation of Nusselt number is almost independ
of Y up to the other end of the cavity. Same nature
observed in the Nusselt number distribution forθ = 135◦.
At the cavity orientationθ = 90◦, fluid is almost motionless
t

t

Fig. 4. Variation of local Nusselt number withY at Ra= 103.

Fig. 5. Variation of local Nusselt number withY at Ra= 105.

inside the cavity. At this angular position, local Nuss
number distribution atRa= 105 shows similar pattern a
Ra= 103. At θ = 270◦, bicellular flow appears and loca
Nusselt number shows periodic distribution along the
wall.

3.3. Average heat transfer

Average Nusselt number is calculated by integrating lo
Nusselt number distribution using the following equation

Nuav = 1

S

S∫
0

NuL ds (9)

wheres is the distance along the wavy wall andS is the total
length of the wavy wall which can be calculated using
following expression

S =
A∫

0

√
1+

(
dX

dY

)
dY = A2 + 2λ2π2

A
(10)

Fig. 6 shows the distribution of average Nusselt numbe
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Fig. 6. Variation of average Nusselt number with angle of inclination

a function of angle of inclination(θ) at different Rayleigh
numbers forλ = 0.166 andA = 2.0. For a particular
angular positionθ , average Nusselt number increases w
the increase of Rayleigh number exceptθ = 90◦. For Ra>
103, average Nusselt number gradually decreases with
increase ofθ up to θ = 90◦ where Nuav = 1.0 for all
values of Rayleigh numbers. Further increase ofθ increase
the average Nusselt number and shows a maximum
θ ≈ 200◦. Additional increase ofθ decreases the avera
Nusselt number up toθ = 270◦. After θ = 270◦, average
Nusselt number again increases withθ and shows the secon
maximum atθ ≈ 335◦ and again decreases.

3.4. Effect of surface waviness

Fig. 7 shows the distribution of average Nusselt num
as a function of surface waviness(λ) for A = 2.0 and
Ra= 105 for some selected values ofθ . Three distinct zone
are identified depending on the pattern of average Nu
number variation withλ. Very lower values of surfac
waviness (λ � 0.05) does not play any effective role o
average heat transfer. Heat transfer is invariant with sur
waviness belowλ ≈ 0.05. In the middle range of surfac
waviness(0.05 � λ < 0.325), heat transfer gradually fal
with the increase of surface waviness approximately u
λ ≈ 0.35. Further increase ofλ increases average Nuss
number. At high waviness (i.e.,λ > 0.35), interwall spacing
closer to the top end becomes small causing no conve
distortion of isotherms. Isotherms remain concentrated a
wall and heat transfer is entirely dominated by conduc
showing high rate of heat transfer at this portion. Fig
will give a clear idea about the surprising rise of avera
Nusselt number at higherλ. For a particular positionθ =
0◦, local Nusselt number is plotted as a function ofY in
Fig. 8 for three different but comparatively higher valu
of λ (= 0.25, 0.32, 0.4). For 0� Y � 0.9, magnitude of
NuL is more or less same. A drastic rise of Nusselt num
occurs afterY ≈ 0.9 for λ = 0.4. The magnitude ofNuL is
comparatively higher thanλ = 0.25 and 0.32 for this rang
t

Fig. 7. Variation of average Nusselt number with surface waviness

Fig. 8. Local Nusselt number variation withY at differentλ.

(0.9� Y � 1.0). So, when integrated, distribution ofNuL at
λ= 0.4 gives higherNuav thanλ= 0.32 and 0.25. This type
of behavior is restricted to higher values ofλ.

3.5. Effect of aspect ratio

Fig. 9 shows the variation of average Nusselt num
as a function of Rayleigh number for three different asp
ratio A = 1.0, 1.5, 2.0 at a constant surface waviness (λ =
0.25) and angular position (θ = 0◦). Based on the Rayleig
number two distinct zones can be identified from the figu
For Ra� 103, average Nusselt number is constant (≈ 1.0)
and independent of Rayleigh number whatever the v
of aspect ratio. This is actually the conduction regim
For Ra � 103, Nusselt number increases with Raylei
number. For a particular Rayleigh number, lower asp
ratio shows the higher heat transfer rate. Comparati
smaller Interwall spacing for lower aspect ratio set
isotherms more close to the wall, which causes a h
temperature gradient. When integrated for calculating t
heat transfer, cavity with lower aspect ratio shows hig
Nuav distribution.
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4. Entropy generation

The dimensionless form of entropy generation rate (NS),
given in Eq. (5), consists of two parts. The first part (fi
square bracketed term at the right-hand side of Eq. (5)) is
irreversibility due to finite temperature gradient and gen
ally termed as heat transfer irreversibility (HTI). The seco
part is the contribution of fluid friction irreversibility (FFI) t
entropy generation, which can be calculated from the sec
square bracketed term. The overall entropy generation,

Fig. 9. Variation of average Nusselt number with aspect ratio.
particular problem, is an internal competition between H
and FFI. Usually, free convection problems, at low and m
erate Rayleigh numbers, are dominated by the heat tra
irreversibility (discussed later in details). Entropy genera
number (NS) is good for generating entropy generation p
files or maps but fails to give any idea whether fluid fricti
or heat transfer dominates. Bejan [20] proposed irrevers
ity distribution ratio (Φ), which is the ratio between FFI an
HTI. As an alternative irreversibility distribution paramet
Paoletti et al. [25] defined Bejan number (Be) which is the
ratio of HTI to the total entropy generation. Mathematica
Bejan number becomes

Be= HTI

HTI + FFI
= 1

1+Φ
(11)

Bejan number ranges from 0 to 1. Accordingly,Be= 1 is
the limit at which the heat transfer irreversibility dominat
Be= 0 is the opposite limit at which the irreversibility
dominated by fluid friction effects, andBe = 1/2 is the
case in which the heat transfer and fluid friction entro
generation rates are equal.

For a constant aspect ratio (= 2.0) and surface wavines
(= 0.125), Fig. 10 shows the contours of Bejan number
Ra= 10–106 and θ = 0◦. For each case, maximum an
minimum values of Bejan number (Bemax and Bemin) are
indicated at the figure titles. Difference between the ma
tudes of two consecutive Bejan contours is equal to (Bemax−
Bemin)/10. At low Rayleigh numbers, fluid is almost m
(a) (b) (c)

(d) (e) (f)

Fig. 10. Contours of Bejan number at different Rayleigh number andθ = 0◦: (a)Ra= 101, Bemax= 1, Bemin = 0.99; (b)Ra= 102, Bemax= 1, Bemin = 0.98;
(c) Ra= 103, Bemax = 1, Bemin = 0.89; (d) Ra= 104, Bemax = 1, Bemin = 0.61; (e) Ra= 105, Bemax = 1, Bemin = 0.51; (f) Ra= 106, Bemax = 1,
Bemin = 0.16.
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Contours of Bejan number at different angles of inclination andRa= 105. (a) θ = 45◦ , Bemax = 1, Bemin = 0.82; (b) θ = 90◦ , Bemax = 1,
Bemin = 0.97; (c) θ = 135◦, Bemax = 1, Bemin = 0.82; (d) θ = 255◦, Bemax = 1, Bemin = 0.19; (e) θ = 270◦, Bemax = 1, Bemin = 0.21; (f) θ = 315◦ ,
Bemax= 1, Bemin = 0.19.
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Fig. 12. Variation of average entropy generation number with angl
inclination.

tionless in the cavity. Irreversibility is entirely dominated
heat transfer. Bejan contour shows symmetric distribu
at Ra= 10, 102 and 103. Near wall concentration of Beja
contours indicates the region of high irreversibility. Conv
tion current becomes stronger at higher Rayleigh num
resulting distortion of isotherms. Near the core region
the cavity, nonzero∂Θ/∂Y starts dominating. With the in
crease of Rayleigh number, zone of irreversibility at the c
region becomes narrow. ForRa= 105, Bejan contours are
presented in Fig. 11 for six different orientations and c
stant aspect ratio and waviness. Atθ = 45◦ and 135◦, the
Fig. 13. Variation of Bejan number with angle of inclination.

region of irreversibility is elongated along the wavy wa
compared to its vertical position (Fig. 10(d)). Atθ = 90◦,
small regions of wavy walls are identified as concentrato
irreversibility. It should be noted that the fluid is almost m
tionless at this position of the cavity. Atθ = 225◦ and 315◦,
due to the convective distortion of isotherms, heat tran
irreversibility occurs near wavy walls as well as the core
gion of the cavity. Due to the appearance of bicellular fl
and swirling nature of isotherms atθ = 270◦, a complicated
Bejan contour distribution is observed.



1012 S. Mahmud, A.K.M.S. Islam / International Journal of Thermal Sciences 42 (2003) 1003–1012

he

n

of

,
igh

ted
tric

tud-
ly
ect
ren
cu-
nt o

cer-
er
the
ular
ped

s-

at
ra-
ally
f

en-
ern

n
ss

an
02)

on
Part

vy
Part

eat

ity,

at
4.
id
i. 10

ne

r in
36

ith

avy
eat

ral
Heat

ed
ental
431.

rom

ed

en
cent

rk,

ned
99.
tive

vec-
for

ic-
t. J.

ics,

on-
984)

s in
.

A volume averaged entropy generation rate (NS,av) is
calculated using the following equation

NS,av = 1

∀
∫
∀
NS d∀ (12)

where ∀ is the volume of the cavity. Fig. 12 shows t
variation of NS,av with θ at Ra = 104, 105 and 106

keeping surface waviness (= 0.125), aspect ratio (= 2.0)
and group parameter (= 1.0) constant. Distribution patter
of NS,av with θ is very much similar toNuav−θ distribution
as shown in Fig. 6. For each Rayleigh number, rate
average entropy generation falls with increasingθ showing
its minimum value atθ = 90◦. At this angular position
entropy generation is same in magnitude of all Rayle
numbers.NuS,av−θ distribution is symmetric about for 0◦ �
θ � 180◦. The second symmetrical distribution ofNuS,av
with θ is observed for 180◦ � θ � 360◦. Based on the
average values of FFI and HTI, Bejan number is calcula
and plotted in Fig. 13 for the same flow and geome
parameters as shown in Fig. 12.

5. Conclusions

Heat transfer characteristics with flow structure are s
ied numerically in this paper for a cavity with differential
heated wavy walls and adiabatic flat walls. Effect of asp
ratio, surface waviness on heat transfer is tested at diffe
Rayleigh numbers and angle of inclination. For a parti
lar aspect ratio, heat transfer is constant and independe
Rayleigh number at conduction regime determined by
tain range ofRa (Ra� 103). Above this range, heat transf
increases with the increase of Rayleigh number. Lower is
surface waviness, higher is the heat transfer for a partic
angular position. Average heat transfer shows a well-sha
variation with the angle of inclination of the cavity. Two di
tinct peaks for average Nusselt number is found atθ ≈ 200◦
and θ ≈ 335◦, respectively. Heat transfer is minimum
θ = 90◦ for all Rayleigh numbers. For a particular aspect
tio and angular position, average Nusselt number gradu
falls with surface waviness (λ) except the higher values o
λ after whichNuav starts to increase. Volume averaged
tropy generation rate shows the similar distribution patt
with θ as average Nusselt number.
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